

OpenStack Virtual Baremetal

OpenStack Virtual Baremetal is a tool for using OpenStack instances to test
baremetal-style deployments.

Table of Contents

	Introduction
	Benefits and Drawbacks

	Host Cloud Setup
	Patching the Host Cloud

	Configuring the Host Cloud

	Preparing the Host Cloud Environment

	Deploying the Heat stack
	Deploying with QuintupleO

	Deploying a Standalone Baremetal Stack

	Deploying Heterogeneous Environments

	Sample Environment Index

	Using a Deployed OVB Environment

	Troubleshooting
	Nodes hang while downloading the deploy ramdisk or kernel

	Nodes are deployed, but cannot talk to each other

	Nodes fail to PXE boot

	Nodes fail to PXE boot 2

	The BMC does not respond to IPMI requests

	Python API
	build_nodes_json

	deploy

	openstackbmc

	auth

Index

	Index

	Module Index

Introduction

OpenStack Virtual Baremetal is a way to use OpenStack instances to do
simulated baremetal deployments. This project is a collection of tools
and documentation that make it much easier to do so. It primarily consists
of the following pieces:

	Patches and documentation for setting up a host cloud.

	A deployment CLI that leverages the OpenStack Heat project to deploy the
VMs, networks, and other resources needed.

	An OpenStack BMC that can be used to control OpenStack instances via IPMI
commands.

	A tool to collect details from the “baremetal” VMs so they can be added as
nodes in the OpenStack Ironic baremetal deployment project.

A basic OVB environment is just a BMC VM configured to control a number
of “baremetal” VMs. This allows them to be treated largely the same
way a real baremetal system with a BMC would. A number of additional
features can also be enabled to add more to the environment.

OVB was initially conceived as an improved method to deploy environments for
OpenStack TripleO development and testing. As such, much of the terminology
is specific to TripleO. However, it should be possible to use it for any
non-TripleO scenarios where a baremetal-style deployment is desired.

Benefits and Drawbacks

As noted above, OVB started as part of the OpenStack TripleO project.
Previous methods for deploying virtual environments for TripleO focused on
setting up all the vms for a given environment on a single box. This had a
number of drawbacks:

	Each developer needed to have their own system. Sharing was possible, but
more complex and generally not done. Multi-tenancy is a basic design
tenet of OpenStack so this is not a problem when using it to provision the
VMs. A large number of developers can make use of a much smaller number of
physical systems.

	If a deployment called for more VMs than could fit on a single system, it
was a complex manual process to scale out to multiple systems. An OVB
environment is only limited by the number of instances the host cloud can
support.

	Pre-OVB test environments were generally static because there was not an API
for dynamic provisioning. By using the OpenStack API to create all of the
resources, test environments can be easily tailored to their intended use
case.

One drawback to OVB at this time is that it does have hard requirements on a
few OpenStack features (Heat, Neutron port-security, private image uploads,
for example) that are not all widely available in public clouds. Fortunately,
as they move to newer and newer versions of OpenStack that situation should
improve.

It should also be noted that without the Nova PXE boot patch, OVB is not
compatible with any workflows that write to the root disk before deployment.
This includes Ironic node cleaning.

Host Cloud Setup

Instructions for setting up the host cloud[1].

1: The host cloud is any OpenStack cloud providing the necessary functionality
to run OVB. The host cloud must be running on real baremetal.

	Patching the Host Cloud

	Configuring the Host Cloud

	Preparing the Host Cloud Environment

Patching the Host Cloud

Note

Patching the host cloud is now optional. On clouds where the Neutron
port-security extension is enabled, it is now possible to run without
patching. However, the PXE boot patch may provide a better user
experience with OVB, so patching may still be desirable.

The changes described in this section apply to compute nodes in the
host cloud.

Apply the Nova pxe boot patch file in the patches directory to the host
cloud Nova. nova-pxe-boot.patch can be used with all releases prior to
Pike, nova-pxe-boot-pike.patch must be used with Pike and later.

Examples:

TripleO/RDO:

sudo patch -p1 -d /usr/lib/python2.7/site-packages < patches/nova/nova-pxe-boot.patch

or

sudo patch -p1 -d /usr/lib/python2.7/site-packages < patches/nova/nova-pxe-boot-pike.patch

Devstack:

Note

You probably don’t want to try to run this with devstack anymore.
Devstack no longer supports rejoining an existing stack, so if you
have to reboot your host cloud you will have to rebuild from
scratch.

Note

The patch may not apply cleanly against master Nova
code. If/when that happens, the patch will need to
be applied manually.

cp patches/nova/nova-pxe-boot.patch /opt/stack/nova
cd /opt/stack/nova
patch -p1 < nova-pxe-boot.patch

or

cp patches/nova/nova-pxe-boot-pike.patch /opt/stack/nova
cd /opt/stack/nova
patch -p1 < nova-pxe-boot-pike.patch

Configuring the Host Cloud

Some of the configuration recommended below is optional, but applying
all of it will provide the optimal experience.

The changes described in this document apply to compute nodes in the
host cloud.

	The Nova option force_config_drive must _not_ be set. If you have to
change this option, restart nova-compute to apply it.

	Ideally, jumbo frames should be enabled on the host cloud. This
avoids MTU problems when deploying to instances over tunneled
Neutron networks with VXLAN or GRE.

For TripleO-based host clouds, this can be done by setting mtu
on all interfaces and vlans in the network isolation nic-configs.
A value of at least 1550 should be sufficient to avoid problems.

If this cannot be done (perhaps because you don’t have access to make
such a change on the host cloud), it will likely be necessary to
configure a smaller MTU on the deployed virtual instances. Details
on doing so can be found on the Using a Deployed OVB Environment page.

Preparing the Host Cloud Environment

	Build or download an ipxe-boot image for the baremetal instances.

	To download a pre-built image:

wget https://repos.fedorapeople.org/repos/openstack-m/ovb/ipxe-boot.qcow2

	To build the image, run the following from the root of the OVB repo:

make -C ipxe

To install the required build dependencies on a Fedora system:

sudo dnf install -y make gcc perl xz-devel genisoimage qemu-img

	Source an rc file that will provide admin credentials for the host cloud.

	Upload an ipxe-boot image for the baremetal instances:

glance image-create --name ipxe-boot --disk-format qcow2 --property os_shutdown_timeout=5 --container-format bare < ipxe/ipxe-boot.qcow2

Note

The path provided to ipxe-boot.qcow2 is relative to the root of
the OVB repo. If the command is run from a different working
directory, the path will need to be adjusted accordingly.

Note

os_shutdown_timeout=5 is to avoid server shutdown delays since
since these servers won’t respond to graceful shutdown requests.

Note

On a UEFI enabled openstack cloud, to boot the baremetal instances
with uefi (instead of the default bios firmware) the image should
be created with the parameters –property=”hw_firmware_type=uefi”.

	Upload a CentOS 7 image for use as the base image:

wget http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud.qcow2

glance image-create --name CentOS-7-x86_64-GenericCloud --disk-format qcow2 --container-format bare < CentOS-7-x86_64-GenericCloud.qcow2

	(Optional) Create a pre-populated base BMC image. This is a CentOS 7 image
with the required packages for the BMC pre-installed. This eliminates one
potential point of failure during the deployment of an OVB environment
because the BMC will not require any external network resources:

wget https://repos.fedorapeople.org/repos/openstack-m/ovb/bmc-base.qcow2

glance image-create --name bmc-base --disk-format qcow2 --container-format bare < bmc-base.qcow2

To use this image, configure bmc_image in env.yaml to be bmc-base instead
of the generic CentOS 7 image.

	Create recommended flavors:

nova flavor-create baremetal auto 8192 50 2
nova flavor-create bmc auto 512 20 1

These flavors can be customized if desired. For large environments
with many baremetal instances it may be wise to give the bmc flavor
more memory. A 512 MB BMC will run out of memory around 20 baremetal
instances.

	Source an rc file that will provide user credentials for the host cloud.

	Add a Nova keypair to be injected into instances:

nova keypair-add --pub-key ~/.ssh/id_rsa.pub default

	(Optional) Configure quotas. When running in a dedicated OVB cloud, it may
be helpful to set some quotas to very large/unlimited values to avoid
running out of quota when deploying multiple or large environments:

neutron quota-update --security_group 1000
neutron quota-update --port -1
neutron quota-update --network -1
neutron quota-update --subnet -1
nova quota-update --instances -1 --cores -1 --ram -1 [tenant uuid]

Deploying the Heat stack

There are two options for deploying the Heat stack.

	Deploying with QuintupleO
	Deleting a QuintupleO Environment

	Advanced Options

	Network Isolation

	QuintupleO and routed networks

	Deploying a Standalone Baremetal Stack
	Deleting an OVB Environment

	Deploying Heterogeneous Environments

	Sample Environment Index
	Deploy with All Networks Enabled and Two Public Interfaces

	Deploy with All Networks Enabled

	Base Configuration Options for Extra Nodes with All Ports Open

	Base Configuration Options for Extra Nodes

	Base Configuration Options for Secondary Roles

	Base Configuration Options

	Enable Instance Status Caching in BMC

	Boot Baremetal Instances from Volume

	Boot Undercloud and Baremetal Instances from Volume

	Boot Undercloud Instance from Volume

	Create a Private Network

	Disable BMC

	Configuration for router advertisement daemon (radvd)

	Enable router advertisement daemon (radvd)

	Public Network External Router

	Disable the Undercloud in a QuintupleO Stack

	Configuration for Routed Networks

	Enable Routed Networks IPv6

	Base Role Configuration for Routed Networks

	Enable Routed Networks

	Assign the Undercloud an Existing Floating IP

	Do Not Assign a Floating IP to the Undercloud

Deploying with QuintupleO

QuintupleO is short for OpenStack on OpenStack on OpenStack. It was the
original name for OVB, and has been repurposed to indicate that this
deployment method is able to deploy a full TripleO development environment
in one command. It should be useful for non-TripleO users of OVB as well,
however.

	Copy the example env file and edit it to reflect the host environment:

cp environments/base.yaml env.yaml
vi env.yaml

	Deploy a QuintupleO stack. The example command includes a number of
environment files intended to simplify the deployment process or make
it compatible with a broader set of host clouds. However, these
environments are not necessary in every situation and may not even work
with some older clouds. See below for details on customizing an OVB
deployment for your particular situation:

bin/deploy.py --quintupleo -e env.yaml -e environments/all-networks.yaml -e environments/create-private-network.yaml

Note

There is a quintupleo-specific option --id in deploy.py.
It appends the value passed in to the name of all resources
in the stack. For example, if undercloud_name is set to
‘undercloud’ and --id foo is passed to deploy.py, the
resulting undercloud VM will be named ‘undercloud-foo’. It is
recommended that this be used any time multiple environments are
being deployed in the same cloud/tenant to avoid name collisions.

Be aware that when --id is used, a new environment file will
be generated that reflects the new names. The name of the new
file will be env-${id}.yaml. This new file should be passed
to build-nodes-json instead of the original.

Note

See Advanced Options for other ways to customize an OVB
deployment.

	Wait for Heat stack to complete. To make this easier, the --poll
option can be passed to deploy.py.

Note

The BMC instance does post-deployment configuration that can
take a while to complete, so the Heat stack completing does
not necessarily mean the environment is entirely ready for
use. To determine whether the BMC is finished starting up,
run nova console-log bmc. The BMC service outputs a
message like “Managing instance [uuid]” when it is fully
configured. There should be one of these messages for each
baremetal instance.

heat stack-show quintupleo

	Build a nodes.json file that can be imported into Ironic:

bin/build-nodes-json
scp nodes.json centos@[undercloud floating ip]:~/instackenv.json

Note

Only the base environment file needs to be passed to this command.
Additional option environments that may have been passed to the
deploy command should not be included here.

Note

If --id was used to deploy the stack, make sure to pass the
generated env-${id}.yaml file to build-nodes-json using the
--env parameter. Example:

bin/build-nodes-json --env env-foo.yaml

Note

If roles were used for the deployment, separate node files named
nodes-<profile>.json will also be output that list only the
nodes for that particular profile. Nodes with no profile
specified will go in nodes-no-profile.json. The base
nodes.json will still contain all of the nodes in the
deployment, regardless of profile.

Note

build-nodes-json also outputs a file named bmc_bm_pairs
that lists which BMC address corresponds to a given baremetal
instance.

Deleting a QuintupleO Environment

All of the OpenStack resources created by OVB are part of the Heat stack, so
to delete the environment just delete the Heat stack. There are a few local
files that may also have been created as part of the deployment, such as
ID environment files, nodes.json files, and bmc_bm_pairs. Once the stack is
deleted these can be removed safely as well.

Advanced Options

There are also a number of advanced options that can be enabled for a
QuintupleO deployment. For each such option there is a sample environment
to be passed to the deploy command.

For example, to deploy all networks needed for TripleO network isolation, the
following command could be used:

bin/deploy.py --quintupleo -e env.yaml -e environments/all-networks.yaml

Important

When deploying with multiple environment files, env.yaml
must be explicitly passed to the deploy command.
deploy.py will only default to using env.yaml if no
environments are specified.

Some options may have additional configuration parameters. These parameters
will be listed in the environment file.

A full list of the environments available can be found at
Sample Environment Index.

Network Isolation

There are a number of environments related to enabling the network isolation
functionality in OVB. These environments are named all-networks*.yaml
and cause OVB to deploy additional network interfaces on the baremetal
instances that allow the use of TripleO’s network isolation.

Note

There are templates suitable for doing a TripleO overcloud deployment
with network isolation in the overcloud-templates directory. See
the readme files in those directories for details on how to use them.

The v2 versions of the templates are suitable for use with the
TripleO Ocata release and later. The others can be used in Newton
and earlier.

Three primary networking layouts are included:

	Basic. This is the default and will only deploy a provisioning interface to
the baremetal nodes. It is not suitable for use with network isolation.

	All Networks. This will deploy an interface per isolated network to the
baremetal instances. It is suitable for use with any of the overcloud
network isolation templates not starting with ‘bond’.

	All Networks, Public Bond. This will also deploy an interface per isolated
network to the baremetal instances, but it will additionally deploy a second
interface for the ‘public’ network that can be used to test bonding in an
OVB environment. The bond-* overcloud templates must be used with this
type of environment.

QuintupleO and routed networks

TripleO supports deploying OpenStack with nodes on multiple network segments
which is connected via L3 routing. OVB can set up a full development
environment with routers and DHCP-relay service. This environment is targeted
for TripleO development, however it should be useful for non-TripleO users of
OVB as well.

	When deploying QuintupleO with routed networks environment files to enable
routed networks must be included, as well as one or more role environment
files. See Enable Routed Networks,
Configuration for Routed Networks, and
Base Role Configuration for Routed Networks in the
Sample Environment Index for details.

	Copy the example env file and edit it to reflect the host environment:

cp environments/base.yaml env.yaml
vi env.yaml

	Copy the routed-networks-configuration.yaml sample environment file and
edit it to reflect the host environment:

cp environments/routed-networks-configuration.yaml env-routed-networks.yaml
vi env-routed-networks.yaml

	For each desired role, copy the routed-networks-role.yaml sample
environment file and edit it to reflect the host environment:

cp environments/routed-networks-role.yaml env-leaf1.yaml
vi env-leaf1.yaml

	Deploy the QuintupleO routed networks environment by running the deploy.py
command. For example:

./bin/deploy.py --env env.yaml \
 --quintupleo \
 --env environments/all-networks.yaml \
 --env environments/routed-networks.yaml \
 --env env-routed-networks.yaml \
 --role env-leaf1.yaml

	When generating the nodes.json file for TripleO undercloud node import,
the environment env-routed.yaml should be specified. Also, to include
physical network attributes of the node ports in nodes.json specify the
--physical_network option when running build-nodes-json. For
example:

bin/build-nodes-json --physical_network

The following is an example node definition produced when using the
--physical_network options. Notice that ports are defined with both
address and physical_network attributes.

 {
 "pm_password": "password",
 "name": "baremetal-leaf1-0",
 "memory": 8192,
 "pm_addr": "10.0.1.13",
 "ports": [
 {
 "physical_network": "provision2",
 "address": "fa:16:3e:2f:a1:cf"
 }
],
 "capabilities": "boot_option:local,profile:leaf1",
 "pm_type": "pxe_ipmitool",
 "disk": 80,
 "arch": "x86_64",
 "cpu": 4,
 "pm_user": "admin"
 }

.. NOTE:: Due to technical debet (backward compatibility) the TripleO
 Undercloud uses ``ctlplane`` as the physical network name for the
 subnet that is local to the Undercloud itself. Either override
 the name of the provision network in the ovb environment by
 setting: ``provision_net: ctlplane`` in the
 ``parameters_defaults`` section or edit the generated nodes.json
 file, replacing:
 ``"physical_network": "<name-used-for-provision_net>"`` with
 ``"physical_network": "ctlplane"``.

	For convenience router addresses are made available via the
network_environment_data key in the stack output of the quintupleo heat
stack. To retrieve this data run the openstack stack show command. For
example:

$ openstack stack show quintupleo -c outputs -f yaml

outputs:
- description: floating ip of the undercloud instance
 output_key: undercloud_host_floating_ip
 output_value: 38.145.35.98
- description: Network environment data, router addresses etc.
 output_key: network_environment_data
 output_value:
 internal2_router: 172.17.1.204
 internal_router_address: 172.17.0.201
 provision2_router: 192.168.25.254
 provision3_router: 192.168.26.254
 provision_router: 192.168.24.254
 storage2_router_address: 172.18.1.254
 storage_mgmt2_router_address: 172.19.1.254
 storage_mgmt_router_address: 172.19.0.254
 storage_router_address: 172.18.0.254
 tenant2_router_address: 172.16.1.254
 tenant_router_address: 172.16.0.254
- description: ip of the undercloud instance on the private network
 output_key: undercloud_host_private_ip
 output_value: 10.0.1.14

	Below is an example TripleO Undercloud configuration (undercloud.conf)
with routed networks support enabled and the three provisioning networks
defined.

[DEFAULT]
enable_routed_networks = true
enable_ui = false
overcloud_domain_name = localdomain
scheduler_max_attempts = 2
undercloud_ntp_servers = pool.ntp.org
undercloud_hostname = undercloud.rdocloud
local_interface = eth1
local_mtu = 1450
local_ip = 192.168.24.1/24
undercloud_public_host = 192.168.24.2
undercloud_admin_host = 192.168.24.3
undercloud_nameservers = 8.8.8.8,8.8.4.4
local_subnet = provision
subnets = provision,provision2,provision3

[provision]
cidr = 192.168.24.0/24
dhcp_start = 192.168.24.10
dhcp_end = 192.168.24.30
gateway = 192.168.24.254
inspection_iprange = 192.168.24.100,192.168.24.120
masquerade = true

[provision2]
cidr = 192.168.25.0/24
dhcp_start = 192.168.25.10
dhcp_end = 192.168.25.30
gateway = 192.168.25.254
inspection_iprange = 192.168.25.100,192.168.25.120
masquerade = true

[provision3]
cidr = 192.168.26.0/24
dhcp_start = 192.168.26.10
dhcp_end = 192.168.26.30
gateway = 192.168.26.254
inspection_iprange = 192.168.26.100,192.168.26.120
masquerade = true

Deploying a Standalone Baremetal Stack

The process described here will create a very minimal OVB environment, and the
user will be responsible for creating most of the resources manually. In most
cases it will be easier to use the QuintupleO deployment
method, which creates most of the resources needed automatically.

	Create private network.

If your cloud provider has already created a private network for your use
then you can skip this step and reference the existing network in your
OVB environment file.

neutron net-create private
neutron subnet-create --name private private 10.0.1.0/24 --dns-nameserver 8.8.8.8

You will also need to create a router so traffic from your private network
can get to the external network. The external network should have been
created by the cloud provider:

neutron router-create router
neutron router-gateway-set router [external network name or id]
neutron router-interface-add router private

	Create provisioning network.

Note

The CIDR used for the subnet does not matter.
Standard tenant and external networks are also needed to
provide floating ip access to the undercloud and bmc instances

Warning

Do not enable DHCP on this network. Addresses will be
assigned by the undercloud Neutron.

neutron net-create provision
neutron subnet-create --name provision --no-gateway --disable-dhcp provision 192.168.24.0/24

	Create “public” network.

Note

The CIDR used for the subnet does not matter.
This can be used as the network for the public API endpoints
on the overcloud, but it does not have to be accessible
externally. Only the undercloud VM will need to have access
to this network.

Warning

Do not enable DHCP on this network. Doing so may cause
conflicts between the host cloud metadata service and the
undercloud metadata service. Overcloud nodes will be
assigned addresses on this network by the undercloud Neutron.

neutron net-create public
neutron subnet-create --name public --no-gateway --disable-dhcp public 10.0.0.0/24

	Copy the example env file and edit it to reflect the host environment:

Note

Some of the parameters in the base environment file are only
used for QuintupleO deployments. Their values will be ignored
in a plain virtual-baremetal deployment.

cp environments/base.yaml env.yaml
vi env.yaml

	Deploy the stack:

bin/deploy.py

	Wait for Heat stack to complete:

Note

The BMC instance does post-deployment configuration that can
take a while to complete, so the Heat stack completing does
not necessarily mean the environment is entirely ready for
use. To determine whether the BMC is finished starting up,
run nova console-log bmc. The BMC service outputs a
message like “Managing instance [uuid]” when it is fully
configured. There should be one of these messages for each
baremetal instance.

heat stack-show baremetal

	Boot a VM to serve as the undercloud:

nova boot undercloud --flavor m1.xlarge --image centos7 --nic net-id=[tenant net uuid] --nic net-id=[provisioning net uuid]
neutron floatingip-create [external net uuid]
neutron port-list
neutron floatingip-associate [floatingip uuid] [undercloud instance port id]

	Turn off port-security on the undercloud provisioning port:

neutron port-update [UUID of undercloud port on the provision network] --no-security-groups --port-security-enabled=False

	Build a nodes.json file that can be imported into Ironic:

bin/build-nodes-json
scp nodes.json centos@[undercloud floating ip]:~/instackenv.json

Note

build-nodes-json also outputs a file named bmc_bm_pairs
that lists which BMC address corresponds to a given baremetal
instance.

	The undercloud vm can now be used with something like TripleO
to do a baremetal-style deployment to the virtual baremetal instances
deployed previously.

Deleting an OVB Environment

All of the OpenStack resources created by OVB are part of the Heat stack, so
to delete the environment just delete the Heat stack. There are a few local
files that may also have been created as part of the deployment, such as
nodes.json files and bmc_bm_pairs. Once the stack is deleted these can be
removed safely as well.

Deploying Heterogeneous Environments

It is possible to deploy an OVB environment with multiple “baremetal”
node types. The QuintupleO deployment method must be used, so it
would be best to start with a working configuration for that before
moving on to heterogeneous deployments.

Each node type will be identified as a role. A simple QuintupleO
deployment can be thought of as a single-role deployment. To deploy
multiple roles, additional environment files describing the extra roles
are required. These environments are simplified versions of the
standard environment file. See environments/base-role.yaml
for a starting point when writing these role files.

Note

Each extra role consists of exactly one environment file. This
means that the standalone option environments cannot be used with
roles. To override the options specified for the primary role in
a secondary role, the parameter_defaults and resource_registry
entries from the option environment must be copied into the role
environment.

However, note that most resource_registry entries are filtered out
of role environments anyway since they are not relevant for a
secondary stack.

Steps for deploying the environment:

	Customize the environment files. Make sure all environments have a role
key in the parameter_defaults section. When building nodes.json, this
role will be automatically assigned to the node, so it is simplest to use
one of the default TripleO roles (control, compute, cephstorage, etc.).

	Deploy with both roles:

bin/deploy.py --quintupleo --env env-control.yaml --role env-compute.yaml

	One Heat stack will be created for each role being deployed. Wait for them
all to complete before proceeding.

Note

Be aware that the extra role stacks will be connected to networks
in the primary role stack, so the extra stacks must be deleted
before the primary one or the neutron subnets will not delete cleanly.

	Build a nodes.json file that can be imported into Ironic:

bin/build-nodes-json --env env-control.yaml

Note

Only the primary environment file needs to be passed here. The
resources deployed as part of the secondary roles will be named
such that they appear to be part of the primary environment.

Note

If --id was used when deploying, remember to pass the generated
environment file to this command instead of the original.

Sample Environment Index

Deploy with All Networks Enabled and Two Public Interfaces

File: environments/all-networks-public-bond.yaml

Description: Deploy an OVB stack that adds interfaces for all the standard TripleO
network isolation networks. This version will deploy duplicate
public network interfaces on the baremetal instances so that the
public network can be configured as a bond.

Deploy with All Networks Enabled

File: environments/all-networks.yaml

Description: Deploy an OVB stack that adds interfaces for all the standard TripleO
network isolation networks.

Base Configuration Options for Extra Nodes with All Ports Open

File: environments/base-extra-node-all.yaml

Description: Configuration options that need to be set when deploying an OVB
environment with extra undercloud-like nodes. This environment
should be used like a role file, but will deploy an undercloud-like
node instead of more baremetal nodes.

Base Configuration Options for Extra Nodes

File: environments/base-extra-node.yaml

Description: Configuration options that need to be set when deploying an OVB
environment with extra undercloud-like nodes. This environment
should be used like a role file, but will deploy an undercloud-like
node instead of more baremetal nodes.

Base Configuration Options for Secondary Roles

File: environments/base-role.yaml

Description: Configuration options that need to be set when deploying an OVB
environment that has multiple roles.

Base Configuration Options

File: environments/base.yaml

Description: Basic configuration options needed for all OVB environments

Enable Instance Status Caching in BMC

File: environments/bmc-use-cache.yaml

Description: Enable caching of instance status in the BMC. This should reduce load on
the host cloud, but at the cost of potential inconsistency if the state
of a baremetal instance is changed without using the BMC.

Boot Baremetal Instances from Volume

File: environments/boot-baremetal-from-volume.yaml

Description: Boot the baremetal instances from Cinder volumes instead of
ephemeral storage.

Boot Undercloud and Baremetal Instances from Volume

File: environments/boot-from-volume.yaml

Description: Boot the undercloud and baremetal instances from Cinder volumes instead of
ephemeral storage.

Boot Undercloud Instance from Volume

File: environments/boot-undercloud-from-volume.yaml

Description: Boot the undercloud instance from a Cinder volume instead of
ephemeral storage.

Create a Private Network

File: environments/create-private-network.yaml

Description: Create the private network as part of the OVB stack instead of using an
existing one.

Disable BMC

File: environments/disable-bmc.yaml

Description: Deploy a stack without a BMC. This will obviously make it impossible to
control the instances via IPMI. It will also prevent use of
ovb-build-nodes-json because there will be no BMC addresses.

Configuration for router advertisement daemon (radvd)

File: environments/ipv6-radvd-configuration.yaml

Description: Contains the available parameters that need to be configured when using
a IPv6 network. Requires the ipv6-radvd.yaml environment.

Enable router advertisement daemon (radvd)

File: environments/ipv6-radvd.yaml

Description: Deploy the stack with a router advertisement daemon running for the
provisioning network.

Public Network External Router

File: environments/public-router.yaml

Description: Deploy a router that connects the public and external networks. This
allows the public network to be used as a gateway instead of routing all
traffic through the undercloud.

Disable the Undercloud in a QuintupleO Stack

File: environments/quintupleo-no-undercloud.yaml

Description: Deploy a QuintupleO environment, but do not create the undercloud
instance.

Configuration for Routed Networks

File: environments/routed-networks-configuration.yaml

Description: Contains the available parameters that need to be configured when using
a routed networks environment. Requires the routed-networks.yaml or
routed-networks-ipv6.yaml environment.

Enable Routed Networks IPv6

File: environments/routed-networks-ipv6.yaml

Description: Enable use of routed IPv6 networks, where there may be multiple separate
networks connected with a router, router advertisement daemon (radvd),
and DHCP relay. Do not pass any other network configuration environments
after this one or they may override the changes made by this environment.
When this environment is in use, the routed-networks-configuration
environment should usually be included as well.

Base Role Configuration for Routed Networks

File: environments/routed-networks-role.yaml

Description: A base role environment that contains the necessary parameters for
deploying with routed networks.

Enable Routed Networks

File: environments/routed-networks.yaml

Description: Enable use of routed networks, where there may be multiple separate
networks connected with a router and DHCP relay. Do not pass any other
network configuration environments after this one or they may override
the changes made by this environment. When this environment is in use,
the routed-networks-configuration environment should usually be
included as well.

Assign the Undercloud an Existing Floating IP

File: environments/undercloud-floating-existing.yaml

Description: When deploying the undercloud, assign it an existing floating IP instead
of creating a new one.

Do Not Assign a Floating IP to the Undercloud

File: environments/undercloud-floating-none.yaml

Description: When deploying the undercloud, do not assign a floating ip to it.

Using a Deployed OVB Environment

After an OVB environment has been deployed, there are a few things to know.

	The undercloud vm can be used with something like TripleO
to do a baremetal-style deployment to the virtual baremetal instances
deployed previously.

	To reset the environment, usually it is sufficient to do a nova rebuild
on the undercloud to return it to the original image. To ensure that
no traces of the old environment remain, the baremetal vms can be rebuilt
to the ipxe-boot image as well.

Note

If you are relying on the ipxe-boot image to provide PXE boot
support in your cloud because Nova does not know how to PXE boot
natively, the baremetal instances must always be rebuilt before
subsequent deployments.

Note

Do not rebuild the bmc. It is unnecessary and not guaranteed
to work.

	If the host cloud’s tenant network MTU is 1500 or less, it will be necessary
to configure the deployed interfaces with a smaller MTU. The tenant network
MTU minus 50 is usually a safe value. For the undercloud this can be done
by setting local_mtu in undercloud.conf.

Note

In Mitaka and older versions of TripleO it will be necessary to do the
MTU configuration manually. That can be done with the following
commands (as root):

Replace 'eth1' with the actual device to be used for the
provisioning network
ip link set eth1 mtu 1350
echo -e "\ndhcp-option-force=26,1350" >> /etc/dnsmasq-ironic.conf
systemctl restart 'neutron-*'

	If using the full network isolation provided by one of the
all-networks*.yaml environments then a TripleO overcloud can be deployed
in the OVB environment by using the network templates in the
overcloud-templates directory. The names are fairly descriptive, but
this is a brief explanation of each:

	network-templates: IPv4 multi-nic. Usable with the network layout
deployed by the all-networks.yaml environment.

	ipv6-network-templates: IPv6 multi-nic. Usable with the network layout
deployed by the all-networks.yaml environment.

	bond-network-templates: IPv4 multi-nic, with duplicate public
interfaces for testing bonded nics. Usable with the network layout
deployed by the all-networks-public-bond.yaml environment.

The undercloud’s public interface should be configured with the address
of the default route from the templates in use. Firewall rules for
forwarding the traffic from that interface should also be added. The
following commands will make the necessary configuration:

cat >> /tmp/eth2.cfg <<EOF_CAT
network_config:
 - type: interface
 name: eth2
 use_dhcp: false
 addresses:
 - ip_netmask: 10.0.0.1/24
 - ip_netmask: 2001:db8:fd00:1000::1/64
EOF_CAT
sudo os-net-config -c /tmp/eth2.cfg -v
sudo iptables -A POSTROUTING -s 10.0.0.0/24 ! -d 10.0.0.0/24 -j MASQUERADE -t nat

Troubleshooting

A list of common problems and their solutions.

Nodes hang while downloading the deploy ramdisk or kernel

Cause: Improper MTU settings on deployment interfaces.

Solution: Set the MTU on the deployment interfaces to allow PXE booting to
work correctly. For TripleO-based deployments, see the readme
for details on how to do this. For others, make sure that the
deployment nic on the undercloud vm has the MTU set appropriately
and that the DHCP server responding to PXE requests advertises the
same MTU. Note that this MTU should be 50 bytes smaller than the
physical MTU of the host cloud.

Nodes are deployed, but cannot talk to each other

In OpenStack deployments, this often presents as rabbitmq connectivity issues
from compute nodes.

Cause: Improper MTU settings on deployed instances.

Solution: Essentially the same as the previous problem. Ensure that the MTU
being used on the deployed instances is 50 bytes smaller than the
physical MTU of the host cloud. Again, for TripleO-based
deployments the readme has details on how to do this.

Nodes fail to PXE boot

Cause: The nodes are not configured to PXE boot properly.

Solution: This depends on the method being used to PXE boot. If the Nova
patch is being used to provide this functionality, then ensure
that it has been applied on all compute nodes and those nodes’
nova-compute service has been restarted. If the ipxe-boot image
is being used without the Nova patch, the baremetal instances must
be rebuilt to the ipxe-boot image before subsequent deployments.

Nodes fail to PXE boot 2

DHCP requests are seen on the undercloud
VM, but responses never get to the baremetal instances.

Cause: Neutron port security blocking DHCP from the undercloud.

Solution: Ensure that the Neutron port-security extension is present in
the host cloud. It is required for OVB to function properly.

The BMC does not respond to IPMI requests

Cause: Several. Neutron may not be configured to allow the BMC to listen
on arbitrary addresses. The BMC deployment may have failed for some
reason.

Solution: Neutron must be configured to allow the BMC to listen on
arbitrary addresses. This requires the port-security extension as in the
previous solution. If this is already configured correctly, then the BMC may
have failed to deploy properly. This can usually be determined by looking at
the nova console-log of the BMC instance. A correctly working BMC will
display ‘Managing instance [uuid]’ for each baremetal node in the
environment. If those messages are not found, then the BMC has
failed to start properly. The relevant error messages should be
found in the console-log of the BMC. If that is not sufficient to
troubleshoot the problem, the BMC can be accessed using the
ssh key configured in the OVB environment yaml as the ‘centos’
user.

Python API

build_nodes_json

deploy

openstackbmc

	
class openstackbmc.OpenStackBmc(authdata, port, address, instance, cache_status, os_cloud)

	
	
get_boot_device()

	Return the currently configured boot device

	
get_power_state()

	Returns the current power state of the managed instance

	
log(*msg)

	Helper function that prints msg and flushes stdout

	
power_off()

	Stop the managed instance

	
power_on()

	Start the managed instance

	
power_reset()

	Not implemented

	
power_shutdown()

	Stop the managed instance

	
set_boot_device(bootdevice)

	Set the boot device for the managed instance

	Parameters

	bootdevice – One of [‘network’, ‘hd] to set the boot device to
network or hard disk respectively.

auth

	
auth._cloud_json()

	Return the current cloud’s data in JSON

Retrieves the cloud from os-client-config and serializes it to JSON.

	
auth._create_auth_parameters()

	Read keystone auth parameters from appropriate source

If the environment variable OS_CLOUD is set, read the auth information
from os_client_config. Otherwise, read it from environment variables.
When reading from the environment, also validate that all of the required
values are set.

	Returns

	A dict containing the following keys: os_user, os_password,
os_tenant, os_auth_url, os_project, os_user_domain,
os_project_domain.

 Python Module Index

 a |
 b

 		 	

 		
 a	

 	
 	
 auth	

 		 	

 		
 b	

 	
 	
 build_nodes_json	

Index

 _
 | A
 | B
 | G
 | L
 | O
 | P
 | S

_

 	
 	_cloud_json() (in module auth)

 	
 	_create_auth_parameters() (in module auth)

A

 	
 	auth (module)

B

 	
 	build_nodes_json (module)

G

 	
 	get_boot_device() (openstackbmc.OpenStackBmc method)

 	
 	get_power_state() (openstackbmc.OpenStackBmc method)

L

 	
 	log() (openstackbmc.OpenStackBmc method)

O

 	
 	OpenStackBmc (class in openstackbmc)

P

 	
 	power_off() (openstackbmc.OpenStackBmc method)

 	power_on() (openstackbmc.OpenStackBmc method)

 	
 	power_reset() (openstackbmc.OpenStackBmc method)

 	power_shutdown() (openstackbmc.OpenStackBmc method)

S

 	
 	set_boot_device() (openstackbmc.OpenStackBmc method)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 OpenStack Virtual Baremetal

 		
 Introduction

 		
 Benefits and Drawbacks

 		
 Host Cloud Setup

 		
 Patching the Host Cloud

 		
 Configuring the Host Cloud

 		
 Preparing the Host Cloud Environment

 		
 Deploying the Heat stack

 		
 Deploying with QuintupleO

 		
 Deleting a QuintupleO Environment

 		
 Advanced Options

 		
 Network Isolation

 		
 QuintupleO and routed networks

 		
 Deploying a Standalone Baremetal Stack

 		
 Deleting an OVB Environment

 		
 Deploying Heterogeneous Environments

 		
 Sample Environment Index

 		
 Deploy with All Networks Enabled and Two Public Interfaces

 		
 Deploy with All Networks Enabled

 		
 Base Configuration Options for Extra Nodes with All Ports Open

 		
 Base Configuration Options for Extra Nodes

 		
 Base Configuration Options for Secondary Roles

 		
 Base Configuration Options

 		
 Enable Instance Status Caching in BMC

 		
 Boot Baremetal Instances from Volume

 		
 Boot Undercloud and Baremetal Instances from Volume

 		
 Boot Undercloud Instance from Volume

 		
 Create a Private Network

 		
 Disable BMC

 		
 Configuration for router advertisement daemon (radvd)

 		
 Enable router advertisement daemon (radvd)

 		
 Public Network External Router

 		
 Disable the Undercloud in a QuintupleO Stack

 		
 Configuration for Routed Networks

 		
 Enable Routed Networks IPv6

 		
 Base Role Configuration for Routed Networks

 		
 Enable Routed Networks

 		
 Assign the Undercloud an Existing Floating IP

 		
 Do Not Assign a Floating IP to the Undercloud

 		
 Using a Deployed OVB Environment

 		
 Troubleshooting

 		
 Nodes hang while downloading the deploy ramdisk or kernel

 		
 Nodes are deployed, but cannot talk to each other

 		
 Nodes fail to PXE boot

 		
 Nodes fail to PXE boot 2

 		
 The BMC does not respond to IPMI requests

 		
 Python API

 		
 build_nodes_json

 		
 deploy

 		
 openstackbmc

 		
 auth

